
Tony Wildish

Continuous
Integration with
Gitlab

-	1	-	

Feb	6th	2017	

Today’s session…

•  h,p://bit.ly/2kAuhFo	

-	2	-	

Today’s session…

•  Introduc=on	to	Gitlab	
•  Gitlab	for	Con=nuous	Integra=on	
•  Hands-on	session	

–  A	‘hello	world’	tour	of	the	basics	
•  Aside	-	that	incident,	and	what	you	can	do	about	it	

–  Thank	you	Onur,	Chris,	Mario,	Patrick,	Michael,	Joel,	Alex,	Andrew…	
–  hCps://about.gitlab.com/2017/02/01/gitlab-dot-com-database-incident/	

•  Pre-requisites:	
–  You	will	need	basic	knowledge	of	git,	docker	is	useful	too	(e.g.	
see	the	git+docker	training)	

–  This	presentaPon,	and	other	Genepool	training	material:	
hCps://www.nersc.gov/users/computaPonal-systems/genepool/genepool-training-and-tutorials/	

-	3	-	

Why should you care?
•  Safeguard	your	code	against	accidental	loss	

–  Like	with	any	git	plaUorm,	distributed	replicas	
•  Automate	checking	that	your	code	compiles	

–  …and	works.	Can	benchmark	it	too	
•  Automate	deploying	your	code	

–  Including	Docker	containers	->	useful	for	ShiZer/cloud	
•  Reproducibility!	

–  Know	how	that	data	or	plot	was	produced	
•  Useful	one	year	from	now	when	the	referee	starts	asking	awkward	
quesPons	about	your	draZ	paper	

•  Why	gitlab,	why	not	bitbucket,	Travis,	Jenkins…?	
–  Lots	of	acPve	players	in	the	CI	world,	gitlab	seem	to	be	ahead	of	
the	pack,	have	very	flexible	offering,	easy	to	use	

–  That	said,	if	you	prefer	another	opPon,	give	it	a	try!	

-	4	-	

Gitlab is…

•  A	git-based	code	hos=ng	service	
–  Like	github.com,	bitbucket.com,	and	many	others	
–  SCM,	Wiki,	issue-tracking,	project/team-management…	

•  A	con=nuous	integra=on	(CI)	plaVorm	
–  Like	Travis,	Jenkins,	and	others	
–  You	commit/tag	code,	gitlab	builds,	tests,	packages	and	
deploys	it	
•  (you	tell	it	how!	That’s	what	today	is	about)	

–  Distributed	builds,	can	use	many	plaUorms	
•  Laptop/desktop,	Cori/Edison/Genepool,	cloud	(AWS,	GCP)	
•  Can	even	use	mulPple	plaUorms	in	the	same	build	

-	5	-	

Gitlab components

•  Gitlab	server	
–  The	hosPng	service	
–  Project	management	components	
–  CI	build	system	management	(how	‘runners’	are	used)	

•  Gitlab	runners	
–  User-space	daemons	that	execute	builds	
–  Driven	by	the	server	on	pushing	to	the	repository	
–  Highly	configurable,	can	have	mulPple	runners	per	repo	
with	different	compilers,	runPmes,	OS…	

–  Can	run	anywhere:	laptop,	NERSC	machines,	cloud	

-	6	-	

Gitlab server

•  Two	edi=ons,	three	op=ons	
–  CE:	Community	EdiPon	(free,	self-hosted)	
–  EE:	Enterprise	EdiPon	(paid,	self-hosted	or	cloud-hosted)	
–  *	Gitlab.com	(EE,	free)	

•  Unlimited	repositories,	private	or	public	
•  10	GB	disk	space	per	project	
•  Cannot	mirror	external	private	repositories	(update:	see	appendix)	
•  Mirroring	external	public	repositories	has	0-1	hours	latency	

–  Full	comparison	at	hCps://about.gitlab.com/products/	
•  Which	op=on	works	best	for	us?	
–  Not	clear,	nor	do	we	need	to	choose	only	one	
–  Come	and	discuss	your	needs	at	office	hours	

-	7	-	

Gitlab runner
•  Can	run	on	any	plaVorm	

–  Laptop,	Cori/Edison/Genepool/Denovo,	AWS/GCP/SPIN	
–  Configure	runners	per	project	

•  Can	share	runners	between	projects,	or	be	project-specific	
•  *	Gitlab.com	provides	shared	runners,	all	ready	to	use!	

–  Specify	runners	capabiliPes	with	tags	
•  E.g.	gcc/python/perl	version,	system	capabiliPes	(RAM,	cores)	

–  At	build-Pme	
•  Server	chooses	runners	based	on	tags	in	config	file	–	per	step!	
•  Server	launches	as	many	build	processes	as	required	
•  Can	store	products	from	each	step	back	to	server,	for	inspecPon/use	

–  Each	runner	can	run	a	custom	workflow	
•  E.g.	‘build’	on	Cori,	‘build/test/deploy’	on	Genepool	
•  Infinitely	configurable,	per	project	
•  Workflow	conveniently	specified	in	config	file	in	the	project	repository	

-	8	-	

Gitlab and Docker

•  Many	possible	combina=ons…	
–  Q:	Can	I	do	X	with	Docker	and	Gitlab?	A:	Yes,	for	all	X!	

•  Run	Gitlab	Runner	in	a	Docker	container	
–  Avoids	local	installaPon	

•  Pull/run	Docker	containers	to	execute	your	CI	job	
–  Get	exactly	the	build	environment	you	want	
–  *	Use	different	docker	containers	per	step	

•  Build	Docker	containers	inside	your	CI	job	
–  *	Push	them	to	Gitlab	Container	Registry	or	elsewhere	

•  Gitlab	Container	Registry	
–  Integrated	Docker	registry,	upload	a	container	from	your	CI	job	
–  Can	automaPcally	tag	with	branch	name/version	etc	

-	9	-	

The CI configuration file

•  Standard	YAML	
–  Yet	Another	Markup	Language.	Very	human-friendly	
–  .gitlab-ci.yml,	in	the	top	directory	of	your	git	repository	
–  Describes	pipelines	which	consist	of	stages	
–  Each	stage	has	a	specific	funcPon:	build,	test,	deploy…	
–  Each	stage	can	have	its	own	tags	(required	environment)	
–  Each	stage	can	produce	ar=facts/re-use	from	other	stages	
–  Stages	can	run	in	parallel	
–  Check/debug	your	YAML	file	at	hCps://gitlab.com/ci/lint	

•  Similar	to	makefiles	in	some	ways	
–  Specify	dependencies	&	acPons,	not	explicitly	coding	workflows	

-	10	-	

-	11	-	

Define	environment	variables	
for	use	in	the	build	

Executed	before	
every	stage	

Define	the	stages	of	this	
build	pipeline	

-	12	-	

Compile	step,	executes	
the	‘build’	stage	

Tell	gitlab	to	keep	the	intermediate	
build	products	for	one	week	

The	build	commands:	either	inline,	or	
a	script	in	your	git	repository	

Run	step	executes	the	‘test’	stage.	
Depends	on	the	‘compile’	stage,	gets	its	
arPfacts	automaPcally	

Only	runs	for	git-
tagged	versions	

-	13	-	

Install	step	runs	the	‘deploy’	stage.	
Runs	a	docker	container	to	build	a	

docker	image	of	our	code	

-	14	-	

-	15	-	

-	16	-	

Clones	repository,	downloads	
arPfacts	from	compile	step	

-	17	-	

Hands-on, exercise 1, part 1
•  Go	to	Gitlab.com,	create	an	account	
•  Upload	your	SSH	public	key	(not	your	private	key!)	

–  Avatar	top-right	->	pull-down	menu	->	Sevngs	->	SSH-keys	
•  Create	a	new	project	

–  ‘Hamburger’	icon	top-leZ	->	Projects	->	New	Project	(top-right)	
–  Follow	the	steps	to	set	it	up	from	scratch	

•  Enable	the	Container	Registry	for	this	project	
–  Gear	icon	top-right	->	Edit	Project	->	scroll	down	

•  Go	to	h,p://bit.ly/2kAuhFo,	download	=ny-test.tar	
–  Untar	it,	move	all	the	files	into	your	project	(including	‘.git*’)	
–  Edit	.gitlab-ci.yml,	change	REGISTRY_USER	and	APPLICATION	to	your	username	and	

your	project	name,	all	in	lowercase	
•  Add/commit/push	this	code	to	your	project	

–  git	add	.	;	git	commit	–m	‘blah...’	;	git	push	
•  Go	to	your	project	‘Pipelines’	page	

–  Watch	the	progress	of	your	build!	

-	18	-	

Hands-on, exercise 1, part 2

•  Go	to	your	project	‘Registry’	page	
–  You	should	see	a	Docker	image	listed,	with	version	‘latest’	

•  Log	in	to	the	gitlab	docker	registry	
–  From	a	terminal	window,	type:	

•  docker	login	registry.gitlab.com	

–  Give	your	Gitlab	username/password	when	prompted	

•  Run	your	docker	image!	
–  docker	run	registry.gitlab.com/$USER/$PROJECT	

•  $USER	is	your	gitlab	username	
•  $PROJECT	is	the	name	of	your	project	
•  You	should	see	the	‘Hello	World’	message	on	your	terminal!	

-	19	-	

Hands-on, exercise 2

•  Now	add	a	git	tag:	
–  git	tag	v1.0	
–  git	push	–tags	

•  That’s	two	‘-’s	there,	dash-dash-tags	

•  Watch	the	Pipelines	page	
–  You	should	see	a	three-step	build,	with	the	‘test’	stage	

•  Check	the	Repository	page	
–  You	should	see	a	v1.0	docker	image	there	too	
–  Check	you	can	run	it	with:	

•  docker	run	registry.gitlab.com/$USER/$PROJECT:v1.0	

-	20	-	

Hands-on – offline, for bonus points…
•  Ex.3.	Change	the	pipeline	to	do	the	following:	

–  For	tagged	code,	do	the	test	stage	aZer	the	deploy,	not	before	
•  Hint:		

–  Where	do	you	specify	the	order	of	stages?	
–  Where	do	you	specify	the	dependencies?	

•  Ex.4.	Then	add	another	test	to	run	the	Docker	image,	not	the	
live	executable	
–  Hint:	

•  Pick	a	unique	name	for	the	test,	specify	it	runs	the	test	stage	
•  See	how	the	Docker	image	is	built,	copy/modify	to	run	it	instead	

•  Ex.5.	Install	a	gitlab-runner	locally	on	your	machine	
–  Make	it	project-specific,	not	shared	
–  See	‘Crea=ng	and	Registering	a	Runner’	in	the	docs	(

hCps://docs.gitlab.com/ee/ci/runners/README.html)	

-	21	-	

Further steps…

•  Install/run	runners	on	Cori/Genepool?	
–  Can’t	build	docker	images	there,	docker	not	supported	
– Will	have	access	to	the	full	NERSC	build	environment	
–  Gotcha	w.r.t.	installaPon,	come	talk	to	us	first	

•  Install	runners	on	SPIN	(NERSC	internal	cloud)	
–  Under	development,	watch	this	space…	
–  Should	be	able	to	build	docker	images	from	builds	on	Cori	

•  Install	runners	on	your	laptop/desktop?	
–  Good	way	to	get	experience/pracPce	unPl	we	have	
runners	supported	on	SPIN	

-	22	-	

That incident…

•  On	Feb	1st,	Gitlab	accidentally	‘rm	–rf’ed	in	the	
wrong	directory	
–  They	lost	6	hours	of	data	
–  5	backup	methods	all	failed	
–  Laugh	only	if	you’ve	never	
screwed	up	yourself	J	

•  What	was	lost?	
–  Issues,	merge	requests,	anything	done	through	the	web	
–  Any	code	commits	from	repositories	which	were	then	
removed	from	disk	during	that	Pme-window	
•  If	you	sPll	have	your	repo	on	disk,	‘git	push’	and	nothing	is	lost!	

-	23	-	

What could you do to be even safer?
•  Dual-remote	git	repositories	

–  Store	your	code	in	2	or	more	of	gitlab,	github,	bitbucket...	
•  How?	

–  Create	a	repository,	R1,	on	one	service,	populate	as	usual	
–  Create	a	second	repository,	R2,	somewhere	else,	leave	it	empty	
–  Clone	R1	to	your	local	disk	
–  Set	R2	as	a	second	remote	push	desPnaPon	
–  Then	hack,	commit,	push,	push	R2;	update	both	remotes!	

•  Gotchas?	
–  R1	and	R2	know	nothing	about	each	other	

•  If	they’re	both	modified	independently,	you	can	get	into	trouble	
–  However,	fine	if	R2	is	only	used	for	specific	purposes,	like	CI	
–  …and	it’s	a	very	good	way	to	get	started	with	gitlab!	

-	24	-	

Using dual git-remotes for CI
•  Problem:	you	want	to	use	Gitlab	CI,	but…	

–  You	have	code	in	a	private	repository	in	Bitbucket	
–  Gitlab.com	can’t	easily	mirror	external	private	repositories	

•  See	appendix	to	this	presentaPon	
–  You	don’t	want	to	move	your	repository	to	Gitlab	–	(yet!)	

•  Solu=on:	use	dual	git	remotes	
–  Create	an	empty	Gitlab	repository	
–  Clone	your	Bitbucket	repository	somewhere	
–  Configure	your	clone	to	push	to	Gitlab	

•  But	to	pull	only	from	Bitbucket!	
–  ConPnue	working	exactly	as	before,	even	on	shared	projects	

•  Can	pull	changes	commiCed	to	Bitbucket	by	other	people	
•  Then	push	them,	to	send	them	to	Gitlab	

•  This	is	advanced	git,	amaze	your	friends	J	

-	25	-	

Using dual git-remotes for CI

-	26	-	

Bitbucket	 Gitlab	

Fetch,	
Push	

Using dual git-remotes for CI

-	27	-	

Bitbucket	 Gitlab	

Fetch	 Push	

Using dual git-remotes for CI

-	28	-	

Bitbucket	 Gitlab	

Fetch,	
Push	

Push	

Hands-on, exercise 6
•  Go	to	h,ps://bitbucket.org/TWildish/gitlab-ci-demo	
•  Follow	the	instruc=ons	in	the	README.md	

–  Fork	the	repository,	so	you	have	your	own	copy	in	bitbucket,	
–  Clone	it	to	your	local	disk	
–  Create	an	empty	repository	in	gitlab	
–  Set	the	push	desPnaPon	of	your	clone	to	point	to	gitlab	
–  Git	push,	and	watch	the	code	build!	

–  In	another	directory,	clone	the	bitbucket	repository	again,	as	normal	
–  Modify	it	in	some	way	(add	a	file)	and	commit	those	changes	
–  Go	back	to	your	‘bitbucket+gitlab’	clone	
–  Pull	the	changes,	and	push	them	to	gitlab!	

•  Not	the	only	way	to	do	it	
–  Can	have	mulPple	push	desPnaPons	in	the	same	clone	
–  Which	you	do	is	a	maCer	of	personal	choice,	no	clear	advantage	
–  More	info	on	mulPple	remotes:	‘Pro	Git’,	hCps://git-scm.com/book/en/v2,	

free	on	the	web.	Or	ask	us	

-	29	-	

Best practices, gotchas…
•  Be	careful	with	environment	variables	

–  Gitlab	sets	some	secret	environment	variables	(API	keys	etc)	
–  If	you	echo	them	to	your	logfiles,	they	will	be	visible	on	the	web	
–  The	only	way	to	delete	old	logfiles	from	gitlab.com	is	to	delete	the	build!	

•  Check	your	YAML	configura=on	file	for	errors	
–  Use	‘CI	Lint’,	at	hCps://gitlab.com/ci/lint,	can	edit	live	and	validate	

•  Set	your	ar=facts	to	expire	
–  Stuff	you	want	to	keep	should	be	properly	deployed	

•  e.g.	in	a	Docker	image	

•  Keep	your	build	environments	clean,	simple	
–  Unix	configure,	make,	make-test,	make-install	is	a	de-facto	standard	
–  Tag	runners	to	specify	requirements,	avoid	complex	runPme	scripts	

•  E.g.	runner	with	tag	‘genepool’,	use	that	tag	in	YAML	config	file	J	
•  Scripts	with	“if	$NERSC_HOST==‘genepool’”	L	

-	30	-	

National Energy Research Scientific Computing Center

-	31	-	

Mirroring private bitbucket repositories
•  It	is	possible	to	mirror	private	bitbucket	or	github	

repositories,	but	there	are	risks	
–  You	give	your	bitbucket	username	&	password	in	the	URL	of	the	

repository	you	want	to	mirror	
–  This	is	visible	to	anyone	with	the	rights	to	manage	your	project	
–  Anyone	who	gets	access	can	modify	or	delete	your	private	repositories	

•  Here’s	the	recipe:	
–  Create	a	new	account	on	bitbucket,	call	it	‘YourNameRO’	
–  Grant	it	Read	Only	access	to	your	private	bitbucket	repositories	
–  Give	the	username	&	password	of	that	account	to	gitlab,	instead	of	

your	real	account	
–  Only	ever	use	the	YourNameRO	account	for	read-only	access	

•  Never	create	repositories	or	forks,	it’s	just	a	gateway	account	
–  Now	if	your	gitlab	account	is	compromised	you	leak	far	less	access	

•  Someone	can	read	your	private	bitbucket	code,	but	not	change	it	
•  Change	your	YourNameRO	account	password	and	you’re	safe	again!	

-	32	-	

Mirroring private bitbucket repositories 2

•  Bitbucket	(and	other	services)	require	a	unique	email	
address	for	account	registra=on	

•  How	do	you	register	for	a	new	account	without	an	alias	
for	your	lbl.gov	email	address?	
–  Lbl.gov	is	managed	by	Google,	it’s	Gmail	under	the	hood	
–  Any	Gmail	address	can	have	arbitrary	‘extensions’	to	the	
username	as	aliases	for	the	primary	account	
•  Just	add	‘+’	followed	by	more	text	

–  E.g.,	these	are	all	equivalent	to	your	primary	address	
•  user@lbl.gov	
•  user+bitbucket_ro@lbl.gov	
•  user+other_service@lbl.gov	

–  You	don’t	need	to	register	these	email	aliases	anywhere,	you	
can	just	use	them.	Go	ahead,	try	it!	

-	33	-	

